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Abstract.

The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design

was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs).

The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing

sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network5

models were transplanted into the original network model for evaluation. CWS performance was defined as the number of

people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contami-

nation. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection

against worst-case contamination events than that obtained when a more complete network model is available and (2) yield

substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using10

skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized

near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when

there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant

improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would

be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quanti-15

fied previously. The results presented here should be useful to those responsible for the design or implementation of CWSs,

particularly managers and engineers in water utilities, and encourage the development of improved network models.

1 Introduction

Water distribution systems (WDSs) can be contaminated intentionally by the injection of a contaminant into the system or

accidentally, for example, by releases of contaminants into reservoirs or by contaminated water entering the distribution system20

when adequate pressure is not maintained. Sensors designed to detect potential contaminants can provide a warning that

a system has been contaminated and reduce potential consequences associated with a contamination event. The design of

contamination warning systems (CWSs) employing multiple sensors has been an active research area; Hart and Murray (2010)
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have reviewed strategies for placement of sensors in CWSs. Given that a CWS may be able to help reduce consequences

associated with contamination events, understanding the factors that can affect the quality of a CWS design is important for

those responsible for managing distribution systems. This paper focuses on one important factor, the accuracy with which the

network model of a distribution system represents the actual structural details of the network, namely its pipes and junctions.

Lack of structural detail in the network models developed for WDSs is known to reduce the accuracy of estimated adverse5

health effects associated with potential contamination events in these systems (e.g., Grayman et al., 1991; Grayman and Rhee,

2000; Bahadur et al., 2008; Janke et al., 2007, 2009; Davis and Janke, 2014). Lack of network model detail is also known to

affect sensor placement in the design of CWSs (Klise et al., 2013). All network models involve some degree of simplifica-

tion relative to the actual WDS. Although improvements in network models would be expected to result in improved CWS

performance, the relationship between the quality of the network model and CWS performance has not been quantified.10

Studies have examined the influence of uncertainty in various factors on the design of CWSs. Most studied has been the

influence of uncertainty in the nature of potential contamination events; Davis et al. (2013) provide a recent review of work

in this area. Studies also have considered the influence of uncertainty in water demand (e.g., Berry et al., 2006; Comboul and

Ghanem, 2012; Cozzolino et a., 2006, 2011; Mukherjee et al., 2017; Ostfeld and Salomons, 2005a, b; Shastri and Diwekar,

2006), and population density (Rico-Ramirez et al., 2007; Davis et al., 2013). Davis et al. (2013) also considered the influence15

of uncertainty in the rate of contaminant decay in a network following injection and uncertainty in the nature of the exposure

model used to assess the consequences of a contamination event. We are not aware of any studies that have examined the

influence on CWS design of uncertainties in the nature of the network itself, specifically the accuracy with which the network

model used as the basis for designing a CWS represents the actual structure, the pipes and junctions, of the distribution system

being considered.20

In addition to the influence of uncertainty in the various factors just discussed on the performance of a CWS, the design

objective used for the system can also affect its performance when faced with uncertainties. When the nature of potential con-

tamination events is uncertain and the objective is to minimize worst-case adverse consequences associated with the events,

CWSs designed to minimize mean-case consequences are more robust than those designed to minimize worst-case conse-

quences (Davis et al., 2013). These designs are called mean-case and worst-case designs, respectively. Mean-case designs are25

more effective at reducing consequences over a range of conditions. The relative lack of robustness of worst-case designs is

a consequence of the narrow focus of these designs, which handicaps their performance when conditions differ from those

assumed as the basis for the design.

The primary goal of this paper is to examine how and to quantify to what extent limitations in the detail available on a

system’s pipes and junctions affect the performance of a CWS design. An additional goal of this paper is to obtain some insight30

into the robustness of worst- and mean-case designs for a CWS when there are such limitations in the network model used to

represent a WDS.

Contamination in a distribution system has the potential to cause a variety of adverse effects. This paper considers adverse

health effects associated with the ingestion of contaminated tap water; quantities of ingested contaminant, ingestion doses, are

determined for those individuals who are potentially exposed to contaminated water. The term dose level is used to indicate the35
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quantity of ingested contaminant for which adverse consequences are quantified. For a particular contaminant, dose level can

be related to a health-effect level. For example, a dose level could correspond to the median lethal dose or the no-observed-

adverse-effect level. Lower dose levels can be related to a particular health-effect level for more toxic chemical contaminants

and higher dose levels can be related to the same health-effect level for less toxic contaminants. In this paper when high or low

dose levels are discussed, a statement is sometimes added that these can be related to contaminants with relatively low or high5

toxicity, respectively, to re-emphasize this point. The measure of adverse consequences associated with a contamination event

that is used in this paper, called impact, is the number of people who receive a dose of a contaminant above some dose level

due to the ingestion of contaminated tap water. In this paper the performance of a CWS is defined by the impact that occurs

before the CWS detects the presence of contamination.

The analysis presented in this paper is based on case studies using two WDSs. The best available network models for the10

two systems were used to represent the actual distribution systems, and skeletonized versions of these network models were

used as proxies for incomplete network models that might be developed for these systems. Network models will always be

incomplete to some, generally unknown, degree; using skeletonized network models together with the best available network

models allows the potential significance of uncertainties in network models to be studied. CWSs designed to minimize the

adverse consequences of ingesting contaminated tap water were developed using the skeletonized models. These CWSs then15

were utilized in (transplanted into) the complete network models, where their performance was evaluated and compared to the

performance of designs developed using the complete network models. This approach allows the influence of uncertainties in

network model detail on CWS performance to be evaluated. Developing and transplanting both worst- and mean-case designs

allows the relative robustness of these designs to be studied.

2 Methods20

Implementing the approach described above for actual distribution systems requires the following: the availability of reasonably

complete (“all-pipes”) models for the WDSs, an approach to skeletonizing these models, a method for designing CWSs, and

a method for evaluating the performance of the designs. Except for the evaluation of the performance of transplanted CWS

designs developed using skeletonized network models, the methods used here have been documented in previous publications.

The approach used here will be outlined with references provided to previous work.25

Designs for CWSs were developed using the original and skeletonized versions of the network models for two WDSs.

The characteristics of the network models used are summarized in Table 1. The network models were skeletonized using

commercially available software to produce models with three levels of skeletonization (20, 30, and 40 cm trims). All pipes

having the specified or smaller diameter were trimmed or merged. The methodology used for skeletonization is discussed in

Davis and Janke (2014). Table 2 summarizes the characteristics of the skeletonized network models. Note that the ratio of30

the number of pipes to the number of nodes increases as the level of skeletonization increases, illustrating the effect of the

skeletonization process. The networks examined here (N1 and N3) are two of the three networks used in Davis and Janke

(2014). Network N1 is also Network 2 in Ostfeld et al. (2008).
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Table 1. Network descriptions.

Network

Quantity N1 N3

Population (103) 250 350

Area (km2) 490 800

Nodes (103) 13 12

NZD nodes (103) 11 11

Pipes (103) 15 14

Tanks 2 21

Reservoirs 2 3

Pumps 4 43

Valves 5 32

Mean NZD nodal pop. 24 31

Median NZD nodal pop. 16 15

Note: All numbers are rounded independently to two

significant figures. NZD, non-zero demand.

Table 2. Network skeletonization.

Number of

Model Nodes NZDNs Pipes Pipes
Nodes

N1 13,000 11,000 15,000 1.2

N1 20 cm 4,300 3,400 5,600 1.3

N1 30 cm 3,100 2,600 4,300 1.4

N1 40 cm 2,800 2,400 4,000 1.5

N3 12,000 11,000 14,000 1.2

N3 20 cm 4,500 4,300 6,000 1.3

N3 30 cm 3,500 3,300 5,000 1.4

N3 40 cm 3,200 3,000 4,700 1.5

Note: All numbers are rounded independently to two significant

figures. NZDN, non-zero demand node.

Developing the design for a CWS requires the definition of a design-basis threat and the quantification of the potential ad-

verse effects associated with that threat. A CWS is designed to provide protection against these adverse effects. The threat
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considered here is the potential injection of a fixed quantity of contaminant at any one of the nodes in a network or at any of

the nonzero demand (NZD) nodes in the network. The adverse effects examined are the impacts (as defined above) associ-

ated with an injection at a network node. Contaminant injection, transport, and ingestion were simulated using TEVA-SPOT

(U.S. EPA, 2017). TEVA-SPOT uses Version 2.00.12 of EPANET (Rossman, 2000) for calculations involving contaminant

transport. Quantities of ingested contaminant were determined using probabilistic models for ingestion timing and volume.5

Nodal population in a network was assumed to be proportional to nodal water demand. The methodology used in carrying out

these simulations is discussed in detail in Davis et al. (2014). The analysis here assumes 0.5 kg injections of a conservative

contaminant over a 1 h period beginning at 0:00 hours local time. All simulations were 168 h in duration, which includes the

1 h injection. The simulations used a 1 s water-quality time step and a 1 h hydraulic time step. One second is the shortest

water-quality time step that can be used with EPANET.10

Contaminant mass imbalances can occur during water-quality simulations with EPANET (Davis et al., 2017). Large imbal-

ances can be associated with elevated estimates for impacts. However, mass imbalances generally can be minimized using short

water-quality time steps. The 1 s water-quality time step used here minimizes the potential for any mass imbalances during the

water-quality simulations used in this study.

Using TEVA-SPOT, CWSs were designed to minimize worst- and mean-case impacts associated with the design-basis threat15

subject to a constraint on the number of sensors. Development of CWS designs is discussed in Davis et al. (2013). TEVA-SPOT

optimizes sensor placement using a heuristic approach (Berry et al., 2006). Designs were developed for the original and the

three skeletonized network models for each WDS for three sensor set sizes (5, 10, and 25 sensors) and for five different dose

levels ranging from 10-4 to 1 mg. A total of 120 designs were developed for each network (two objectives, four network models,

three sensor set sizes, and five dose levels).20

Sensors in CWSs were assumed to perform perfectly: they detect all contaminants and make no errors. A zero response time

was assumed; all water use stops immediately when a contaminant is detected. This paper does not consider the sensitivity of

consequences to sensor behavior and response time. These assumptions simplify the analysis. Imperfections in sensor behavior

and delays in response will increase consequences relative to those reported here. CWS sensors are arrayed at locations within

a network according to designs developed as described above and in the following paragraphs. CWSs alert when any sensor25

detects contamination during an event. Impact is determined by summing the number of receptors at all nodes who have

received doses above some dose level when the system alerts. The worst-case and mean-case performances of a CWS are

determined by the largest impact and the mean impact, respectively, associated with a threat before contamination is detected

by a sensor

The performance of the CWS designs developed for the original and skeletonized network models for each WDS was30

evaluated using the original network model for the system. Worst-case impacts were determined using both worst-case and

mean-case designs. To evaluate the performance of a design developed using a skeletonized network model but applied to the

original network model, the locations of the sensors determined for the skeletonized network were used to define a sensor net-

work for the original model, and impacts were determined using this transplanted CWS. TEVA-SPOT has a built-in capability,

5
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the Regret Analysis mode, that allows various designs to be easily evaluated and that facilitates the selection of the best sensor

design among those being considered (U.S. EPA, 2017).

The approach described yields impacts for CWSs designed using the original network models as well as impacts for CWS

designs developed using the skeletonized network models that have been transplanted into the original models. Impacts deter-

mined using the transplanted designs were compared with those determined using the original designs to obtain insights into5

the extent to which CWS performance is adversely affected when designs are developed using incomplete information on a

WDS. Comparing the relative worst-case performances of the transplanted worst- and mean-case designs provides insight into

the robustness of these designs when there is uncertainty in the network model.

The heuristic method used for sensor placement generally produces optimal designs, but in some cases can produce designs

that are suboptimal (Davis et al., 2013). For the original model for Network N1 there were two instances of obvious subopti-10

mality for worst-case designs out of the 15 cases (three sensor set sizes and five dose levels) examined; for Network N3 there

was one. A design is suboptimal if larger impacts are obtained when the conditions used in the design and its evaluation are

the same than when such conditions differ. Results were corrected to help minimize the effect of such obvious suboptimalities

for a particular sensor set size and dose level by using the smallest impact from the five designs developed for different dose

levels for that number of sensors. The corrections resulted in reductions in impacts of 6 and 18% for the two instances of15

suboptimality for Network N1 and a 9% reduction for the single instance for Network N3. The correction does not identify the

optimal design; it only helps improve the estimate of impacts that would be obtained with the optimal design.

3 Results and discussion

This section considers two topics: (1) CWS performance given uncertainty in the structural details of the network model

and (2) the robustness of mean- and worst-case CWS designs when there is such uncertainty in the network model. CWS20

performance is discussed in terms of the performance of the overall system and in terms of the performance of the individual

sensors in a system.

3.1 CWS performance: Overall system

CWSs developed using the skeletonized network models generally perform more poorly than do those developed using the

original network model. The following paragraphs discuss the behavior of these different CWSs.25

The plots in Fig. 1 compare estimated impacts for worst-case CWS designs developed for three sensor set sizes using

the original and skeletonized network models for Network N1. In this figure, the designs developed using the skeletonized

network models are non-transplanted designs: they are evaluated using the network models for which they were designed.

Note the logarithmic scales on both the vertical and horizontal axes. Results are given for four different CWS designs as a

function of the dose level used for the design. The CWSs were evaluated using the same dose level as used for their design.30

Impacts increase as dose level decreases, but are relatively constant at smaller dose levels. Impacts decrease as the number

of sensors used in the CWS design increases. The four CWS designs being evaluated for each sensor set size are the design
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Figure 1. Worst-case impact versus dose level for original and non-transplanted, worst-case CWS designs for Network N1. Results are shown

for four levels of network skeletonization (trims).

7

Drink. Water Eng. Sci. Discuss., https://doi.org/10.5194/dwes-2017-39 Drinking Water 
Engineering and Science 

DiscussionsO
pe

n 
A
cc

es
s

Manuscript under review for journal Drink. Water Eng. Sci.
Discussion started: 4 January 2018
c© Author(s) 2018. CC BY 4.0 License.



developed using the original network model and the three non-transplanted designs developed using the skeletonized networks.

In the figure, a trim of 0 cm corresponds to the original model and the 20, 30, and 40 cm trims correspond to the three levels

of skeletonization used. The estimated impacts obtained using the skeletonized network models are similar to those obtained

using the original network model. However, if CWSs are designed using a skeletonized (i.e., an incomplete) network model

and then implemented, they will be used in actual system, which is better approximated by the original network model. The5

performance of transplanted designs is discussed next.

Again using Network N1, the plots in Fig. 2 compare (1) estimated impacts obtained when the CWS designs developed using

the skeletonized models are transplanted into the original network model with (2) impacts estimated for the CWS designed

using the original network model. The plots also show estimated worst-case impacts when no CWS is used. Note the logarith-

mic scales on the vertical and horizontal axes. The differences between the impacts estimated for the designs developed for the10

original and the skeletonized network models for Network N1 generally become larger when the designs for the skeletonized

network model are transplanted into the original network model.

The analysis presented in this paper used an injection mass of 0.5 kg. If desired, figures that provide results as a function

of dose level can be rescaled to show results for different injection masses. The plots in Figs. 1 and 2 and in other figures that

present results as a function of dose level would have the same shape if a different injection mass were used. However, if the15

injected mass is changed by some factor, the values on the horizontal axis also need to be changed by the same factor. For

example, if the injection mass is 5 kg instead of 0.5 kg, the values on the horizontal axis in Figs. 1 and 2 need to be multiplied

by 10. Use of a different injection mass in our analysis would not affect the conclusions presented in this paper.

The plots in Fig. 3 provide a comparison for Network N1 of the impacts obtained using designs developed for the skele-

tonized network models when they are used in the skeletonized network models (non-transplanted designs) and when they are20

transplanted into the original network model. The same design is being used, but evaluated using different network models.

Depending on the dose level and number of sensors, the impacts estimated for Network N1 can be two to three times larger

when the designs are used in the original network rather than in the skeletonized network where they were developed. In other

words, evaluating a CWS using the skeletonized network model for which it was designed can yield results that considerably

underestimate the actual consequences that could occur if the design were used in the actual WDS. There is no consistent25

pattern in impacts or relative impacts related to the level of skeletonization used. Note that the somewhat jagged nature of some

of the lines in the plots in Fig. 3 is the result of using only five points to construct the lines in the plots in this (and other similar)

figures.

The estimated percentage reductions in impacts obtained using the CWSs designed for Network N1 relative to the worst-

case impacts estimated for the network when no CWS is used are shown in the plots in Fig. 4. (When no CWS is used, the30

relative reduction in impacts is 0%.) The reduction in impacts for low dose levels (contaminants with relatively high toxicity)

can be similar and substantial (generally near or > 90% for dose levels below about 0.01 mg) for the original and transplanted

designs. However, at higher dose levels (contaminants with relatively low toxicity), the reduction in impacts obtained with

transplanted designs can be considerably smaller than that obtained with the original design. The reduction in impacts does

not show a consistent relationship with the level of skeletonization. Percentage reduction in impacts decreases as dose level35
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Figure 2. Worst-case impact versus dose level for original and transplanted, worst-case CWS designs for Network N1. Results are shown for

four levels of network skeletonization (trims).
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Figure 3. Relative worst-case impacts for transplanted and non-transplanted worst-case CWS designs for Network N1. Results are shown

for four levels of network skeletonization (trims).
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Figure 4. Reduction in worst-case impacts obtained with original and transplanted worst-case CWS designs for Network N1 relative to

impacts obtained when no CWS is used. Results are shown for four levels of network skeletonization (trims).
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increases. Consequences associated with less toxic contaminants generally are more localized than those associated with more

toxic contaminants because of the larger quantity of contaminant required to produce a similar health effect. CWSs are less

effective in providing protection against localized effects than effects that are more widespread.

Impacts estimated for CWSs designed using Network N3 are shown in the plots in Fig. 5, which provides results similar

to those in Fig. 2 for Network N1. The results for Network N3 are more consistent than those for Network N1, with impacts5

generally increasing with increasing level of skeletonization. The plots in Fig. 6 give the ratio of impacts for transplanted and

non-transplanted designs for Network N3. The ratios are generally larger than those for Network N1 (Fig. 3) when 10 or 25

sensors are used. (Note the difference between the vertical scales used in Figs. 3 and 6.) When designed and evaluated using the

skeletonized network models for Network N3, the results for designs with 10 or 25 sensors underestimate by a factor of two to

eight times the impacts expected if the design were used in the actual network, a larger underestimate than for Network N1. For10

five sensors, the underestimate can be as much as a factor of two. As is the case for Network N1, the percentage reductions in

impacts at larger dose levels achieved using the transplanted CWS designs are generally considerably less than those obtained

using designs developed using the original network model, as shown in Fig. 7.

The relative performance of the transplanted worst- and mean-case CWS designs for Networks N1 and N3 is summarized

in Table 3. Performance is relative to the performance of a CWS designed to minimize worst-case impacts using the original15

network model. For several dose levels, the table gives the range (maximum and minimum values) in the ratios of worst-case

impacts obtained with the transplanted design to the worst-case impacts obtained with the original worst-case design, as well

as the median value of the ratio. The results shown for each network and dose level are based on the nine ratios determined

using three sensor set sizes and three levels of skeletonization. For example, for the 1.0 mg dose level for Network N1 and the

transplanted worst-case design, the minimum value of the ratio of worst-case impacts obtained with the transplanted worst-case20

design to the impact obtained with the original worst case design is 1.3. The largest value of the ratio is 1.5 and the median for

the nine ratios is 1.4.

The results in Table 3 indicate that for Networks N1 and N3 the relative performance of the transplanted worst-case designs

generally becomes poorer when the dose level is smaller than 1.0 mg. In particular, the median and maximum values of the

ratios for the two networks generally increase when the dose level decreases below 1.0 mg. The maximum ratios are generally25

considerably larger for Network N3 than for Network N1, indicating that the relative performance of the transplanted designs is

network dependent. Note that although the relative performance of the transplanted designs is poorer at smaller dose levels, the

reduction in impacts, both percentage wise and in absolute terms is considerably better at smaller dose levels than at 1.0 mg.

The results in Table 3 also show that the relative performance of the transplanted mean-case designs deteriorates when the

dose level decrease below 1.0 mg. The results in the table show that the relative worst-case performance of the transplanted30

mean-case designs is generally similar to the relative worst-case performance of the transplanted worst-case designs: the ratios

for the transplanted mean-case designs are generally similar to the corresponding ratios for the transplanted worst-case designs.

CWS performance is influenced by the network nodes considered as possible injection locations. Fig. 8 provides results for

Network N1 similar to those shown in Fig. 2 except that only NZD nodes are used as injection locations. Differences in the

performances of the transplanted designs obtained with all nodes (Fig. 2) or only NZD nodes (Fig. 8 ) are noticeable when35
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Figure 5. Worst-case impact versus dose level for original and transplanted, worst-case CWS designs for Network N3. Results are shown for

four levels of network skeletonization (trims).
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Figure 6. Relative worst-case impacts for transplanted and non-transplanted worst-case CWS designs for Network N3. Results are shown

for four levels of network skeletonization (trims).
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Figure 7. Reduction in worst-case impacts obtained with original and transplanted worst-case CWS designs for Network N3 relative to

impacts obtained when no CWS is used. Results are shown for four levels of network skeletonization (trims).
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Table 3. Ratios of worst-case impacts obtained with transplanted and original CWS designs

Ratio of worst-case impacts

Network N1 Network N3

Dose level (mg) Min. Median Max. Min. Median Max.

Transplanted worst-case design

10-4 1.1 2.2 4.0 1.0 1.4 6.3

10-2 1.0 2.1 4.1 1.0 2.3 6.6

1.0 1.3 1.4 1.5 1.1 1.6 2.2

Transplanted mean-case design

10-4 1.0 1.7 4.3 1.3 5.6 6.3

10-2 1.0 1.8 4.2 1.1 2.8 6.6

1.0 1.2 1.3 1.5 1.3 1.6 2.2

Note: Ratio is the ratio of the worst-case impact obtained with the transplanted design divided

by the worst-case impact obtained with the worst-case design developed using the original

network model. Minimum (Min.), median, and maximum (Max.) values for the ratio are given

for the nine ratios determined for the three sensor set sizes and the three skeletonizations.

10 or 25 sensors are used. Worst-case impacts with no CWS are somewhat smaller when only NZD nodes are used relative to

those obtained when all nodes are considered as possible injection locations.

3.2 CWS performance: Individual sensors

The preceding discussion has examined the performance of CWSs as systems. Examining the performance of individual sen-

sors in those systems provides some additional insight into how the overall systems perform. CWS designs were developed5

considering their performance when challenged by the possible injection of contaminants at any node in the network or at any

NZD node. A CWS can detect some of the events, but, in general, with a limited number of sensors will not detect all events.

The worst-case performance of a CWS is determined by the largest impact associated with any event that occurs before an event

is detected by a sensor. For Network N1 with a five-sensor CWS and injections at NZD nodes, the sensors detect about 3,500

events out of about 11,000, for a dose level of 10-4 mg. The number of events detected for the original network model does10

decrease somewhat as the level of skeletonization increases, from about 3,600 for the original design, to about 3,500 for the

20 cm transplanted design to about 3,450 for the 40 cm transplanted design. About 7,000 events have not been detected by any

sensor when the CWS designs first detect an event. The maximum impacts for undetected events are about 5,000, 4,800, and

5,700 for the original, 20 cm, and 40 cm designs, respectively. The optimization process should minimize worst-case impacts

but does not attempt to minimize other impacts, either detected or not. For the case considered here, the largest impacts for15
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Figure 8. Worst-case impact versus dose level for original and transplanted, worst-case CWS designs for Network N1, non-zero demand

nodes only. Results are shown for four levels of network skeletonization (trims).
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undetected events are smaller than the worst-case impacts. Therefore, it is not unexpected that the largest undetected impact

for the original design (5,000) is somewhat larger than the largest undetected impact for the 20 cm transplanted design (4,800).

The performance of the individual sensors in the five-sensor CWS design developed using the original network and the

five-sensor, 20 and 40 cm transplanted designs are shown in Fig. 9 for a dose level of 10-4 mg. Note that the vertical scale

on the plot for the 20 cm design is different from the vertical scale used in the other two plots. The figure shows results5

considering NZD nodes as injection locations. The general locations of the five widely spaced sensors in the three designs are

similar and the sensors are arbitrarily labeled as Sensors 1 through 5, consistently for all the designs. For the detected events,

the impacts at the time the events are detected were sorted in ascending order for each of the five sensors and plotted against

event number, starting with the lowest impact event for Sensor 1 and continuing using a cumulative count of events through

the highest impact event for Sensor 5. The numbering of events in the three plots in Fig. 9 is independent. The highest impact10

for any event detected by any sensor is the worst-case impact for the CWS unless a higher impact is associated with any of the

undetected events. No undetected events with such higher impacts occur for Network N1 and five sensors, as noted above.

In Fig. 9, the results for each of the five sensors are presented from left to right, with the results labeled with the sensor

number in the upper plot. As an example of how to interpret the plots in the figure, in the upper plot the results for Sensor

4 begin at about Event 800 and continue to about Event 2200; about 1,400 events are detected by this sensor. The maximum15

impact for any impact detected by the sensor is about 2,500. The highest impact for any event detected by any sensor is over

5,000 for Sensor 5. This is the worst-case impact for the CWS.

The performance of the sensors varies substantially between the original and transplanted designs. The worst-case impact

for the original design is over 5,000, as already noted, over 16,000 for the transplanted 20 cm design, and over 5,000 for the

transplanted 40 cm design, similar to that for the original design, but for a different sensor. The three worst-case impacts in20

Fig. 9 correspond to the worst-case impacts in the upper plot in Fig. 8 for a dose level of 10-4 mg. Fig. 8 shows that the worst-

case impacts for the original and 40 cm designs for five sensors are similar at that dose level. Fig. 9 shows that these impacts

were the result of events observed by different sensors. Although not shown in the figure, the events in the two cases are also

different. Fig. 8 suggests that the original and 40 cm, five-sensor designs perform similarly for a dose level of 10-4 mg. In fact,

the similarity results from sensors in different parts of the network detecting different events with the same impacts.25

3.3 Robustness of mean- and worst-case designs

Figs. 10 and 11 provide a direct comparison of the worst-case impacts obtained with the transplanted mean- and worst-case

designs for Networks N1 and N3. The figures are scatterplots of the impacts obtained with the two types of transplanted

designs. Note the logarithmic scales on the vertical and horizontal axes. For each network, results are given for three sensors

set sizes, three levels of skeletonization, and five dose levels, for a total of 45 comparisons in each figure. Some points in the30

figures overlap or are clustered closely together. For points that lie above the diagonal lines in the figures, the transplanted

mean-case design yields smaller worst-case impacts than the transplanted worst-case design. For points below the lines, the

worst-case design yields smaller impacts. For points on the line, both designs provide the same impacts.
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Figure 9. Performance of individual sensors for five-sensor, worst-case CWS designs for Network N1 and a dose level of 10-4 mg obtained

using nonzero demand nodes as possible injection locations. Results are presented for CWSs developed using the original network model

and two skeletonized models. Evaluations of CWS performance used the original network model.
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Figure 10. Comparison of worst-case impacts for transplanted mean- and worst-case CWS designs for Network N1 (numbers and arrows

indicate overlapping or clustered points)

For Network N1 there are 27 points in Fig. 10 that lie above the diagonal line, 9 points that lie on the line, and 9 points that lie

below the line. For the comparisons used in Fig. 10, the transplanted mean-case designs yield worst-case impacts that are less

than or equal to those yielded by the transplanted worst-case designs in 36 of the 45 cases for Network N1. The transplanted

worst-case designs yield worst-case impacts that are less than or equal to those obtained for the transplanted mean-case designs

in 18 of the 45 cases. For the 27 instances in which impacts for the worst-case designs exceed those for the mean-case designs,5

the impacts are about 34% larger on average. For the 9 instances in which the impacts for the mean-case designs are larger,

they are about 59% larger on average. Considering only NZD nodes (not plotted), the transplanted mean-case designs perform

as well as or better than the transplanted worst-case designs in 32 of the 45 cases; transplanted worst-case designs perform as

well as or better than transplanted mean-case designs in 28 of the 45 cases.

For Network N3 there are 6 points in Fig. 11 that lie above the diagonal, 27 points that lie on the line, and 12 points that10

lie below the line. The transplanted mean-case designs yield impacts less than or equal to those for the worst-case designs in

33 of the 45 cases for Network N3. The transplanted worst-case designs yield worst-case impacts that are less than or equal

to those obtained with the transplanted mean-case designs in 39 of the 45 cases. For the 6 instances in which impacts for the

worst-case designs exceed those for the mean-case designs, the impacts are about 96% larger on average. For the 12 instances

in which the impacts for the mean-case designs are larger, they are about 120% larger on average. Considering only NZD nodes15

(not plotted), the transplanted mean-case designs perform as well as or better than the transplanted worst-case designs in 28 of
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Figure 11. Comparison of worst-case impacts for transplanted mean- and worst-case CWS designs for Network N3 (numbers and arrows

indicate overlapping or clustered points)

the 45 cases; transplanted worst-case designs perform as well as or better than transplanted mean-case designs in 38 of the 45

cases.

For the two networks studied, the mean-case designs developed using the skeletonized network models yield results that are

comparable to those obtained with the worst-case designs developed using the skeletonized network models when the designs

are transplanted into the original network models. Mean-case designs perform somewhat better for Network N1 and somewhat5

poorer for Network N3. As discussed above, mean-case designs are more robust than worst-case designs when the objective

is to minimize worst-case impacts and there is uncertainty concerning the conditions of a contamination event. The results

presented here for Networks N1 and N3 indicate that transplanted mean-case and worst-case designs can be similarly robust

when used to estimate worst-case impacts in the original network models. The small sample size limits the ability to make any

more general conclusions about the overall robustness of mean-case designs under conditions of uncertainty in the network10

model. Evaluations using additional networks would be helpful.

4 Conclusions

On the basis of the two networks examined, lack of structural detail in the network model results in worst-case CWS designs that

perform more poorly than worst-case designs developed using the original “all-pipes” network model. The relative performance

of the designs developed using incomplete network models, as measured by the reduction in worst-case impacts, generally15
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improves as the dose level decreases. Nevertheless, at smaller dose levels (more toxic contaminants) a lack of network model

detail can yield CWS designs that have worst-case impacts several times larger than those obtained using a much more complete

network model.

Designing and evaluating a CWS using an incomplete network model can result in a substantial underestimate of the conse-

quences that could occur if the design were used in the actual WDS. The difference depends on the network, dose level, and5

number of sensors; however, for the cases considered in this paper, estimated impacts can increase by a factor of two to eight

times when the design is evaluated using the complete network model.

Although lack of model detail generally has an adverse effect on CWS performance, no simple relationship was found

between the degree of skeletonization and loss of performance. For the two networks studied, the relationship depends on the

number of sensors used in the CWS.10

In spite of the negative effect of loss of network model structural detail on CWS performance, CWSs designed using incom-

plete network models can provide substantial reductions in adverse consequences compared to results obtained when no CWS

is used, except at high dose levels (less toxic contaminants), for which consequences tend to be localized near the injection

location. Reductions at low dose levels are generally above 70% for the skeletonized networks and consequences considered.

Proper understanding of the basis for CWS performance requires an understanding of the performance of the individual15

sensors used in the CWS. As discussed for Network N1, apparently similar overall performance of two different CWS designs

can be associated with very different results for the individual sensors in the system.

Mean-case designs developed using incomplete network models can provide worst-case results that are generally comparable

to those obtained with worst-case designs developed using the same incomplete models, consistent with a conclusion that mean-

case designs can provide robust results under conditions of uncertainty. However, results for more networks are needed before20

any broader conclusions can be made.

Improvements in network models, by reducing the uncertainty in their structural details, have the potential to yield signif-

icantly better performing CWSs. The magnitude of the potential improvement depends on the degree of the improvement in

the network model and the nature of the contaminants of most concern. However, the results for the networks examined here

suggest that a reduction in worst-case impacts by a factor of as much as about two or more is possible for contaminants whose25

effects are not localized near the injection location (cf. Table 3). In addition, evaluations of the expected performance of CWSs

designed using all-pipes models should provide considerably more realistic results than evaluations of designs developed with

incomplete network models, which yielded substantial (two to eight times) underestimates of impacts for the two networks

examined.

The results presented here should be useful to those responsible for designing or implementing CWSs, in particular managers30

and engineers in water utilities. Hopefully, the results will help provide motivation for the improvement of existing network

models.
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